If it's not what You are looking for type in the equation solver your own equation and let us solve it.
85-16t^2=0
a = -16; b = 0; c = +85;
Δ = b2-4ac
Δ = 02-4·(-16)·85
Δ = 5440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5440}=\sqrt{64*85}=\sqrt{64}*\sqrt{85}=8\sqrt{85}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{85}}{2*-16}=\frac{0-8\sqrt{85}}{-32} =-\frac{8\sqrt{85}}{-32} =-\frac{\sqrt{85}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{85}}{2*-16}=\frac{0+8\sqrt{85}}{-32} =\frac{8\sqrt{85}}{-32} =\frac{\sqrt{85}}{-4} $
| 5-(6v+9)+2v=2(v+1) | | -12t^2+4t+40=0 | | -9(z+1)+4(4z-4)=6(z-4)+10 | | 68=x/25*100 | | -11(y+3)6(3y-4)=6(y-3)+8 | | 2(5c–4)=-4c+20 | | 4t+4=12t^2-36 | | 4t+4=3t^2+9 | | 4+2i=-10 | | f(6+2)=f(6+1)+4f(6) | | f(5+2)=f(5+1)+4f(5) | | f(0+2)=f(0+1)+4f(0) | | f(1+2)=f(1+1)+4f(1) | | 7-4=4x-9 | | 7+3i=-8 | | 7+3i=8 | | 4y=y+2+4 | | 5x^2+70x=245 | | X=1+.25x | | 4w=w+42 | | 2x-3-(3x-1)=1 | | 21x=20+8x | | 4s=s+42 | | 30^2+w-20=0 | | 12x=20+8x | | 7u=u+6 | | -18-7=5t-9t-6t | | 24=0.5+2l | | -×+3y=-12 | | b-7/4=b+7/3 | | 8s=s+70 | | b-7/5=b+7/3 |